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Abstract Many applications from science and engineering are based on parame-
trized evolution equations and depend on time-consuming parameter studies or need
to ensure critical constraints on the simulation time. For both settings, model order
reduction by the reduced basis methods is a suitable means to reduce computational
time. In this proceedings, we show the applicability of the reduced basis frame-
work to a finite volume scheme of a parametrized and highly nonlinear convection-
diffusion problem with discontinuous solutions. The complexity of the problem set-
ting requires the use of several new techniques like parametrized empirical operator
interpolation, efficient a posteriori error estimation and adaptive generation of re-
duced data. The latter is usually realized by an adaptive search for base functions in
the parameter space. Common methods and effects are shortly revised in this pre-
sentation and supplemented by the analysis of a new strategy to adaptively search
in the time domain for empirical interpolation data.
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1 Introduction

Reduced basis (RB) methods are popular methods for model order reduction of
problems with parametrized partial differential equations that need to be solved for
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many parameters. Such scenarios might occur in parameter studies, optimization,
control, inverse problems or statistical analysis for a given parametrized problem.
Such problems deal with different solutions uh (µ) ∈ Wh from a high dimensional
discrete function space Wh ⊂ L2(Ω) which are characterized by a parameter µ ∈
P ⊂ Rp. For evolution problems, a discrete solution forms a series of what we call
“snapshot solutions” uk

h(µ) indexed by a time-step number k = 0, . . . ,K.
By applying the reduced basis method, these solution trajectories need to be com-

puted for a few parameters only and can then be used to span a problem-specific
subspace Wred ⊂ Wh. If this subspace captures a broad solution variety, a numeri-
cal scheme based on this reduced basis space Wred can produce reduced solutions
ured(µ) ∈ Wred very inexpensively for every parameter µ ∈P . In case of nonlin-
ear discretizations or complex dependencies of the equations on the parameter, the
reduced scheme requires an empirical interpolation method [1] to efficiently inter-
polate operator evaluations in a low-dimensional discrete function space.

The applicability of the reduced scheme has been successfully demonstrated for
stationary, instationary, linear and nonlinear problems mainly based on finite ele-
ment schemes (cf. [7] and the references therein). In this presentation, we focus on
a scalar, but highly nonlinear convection–diffusion problem: For a given parameter
µ ∈P determine solutions u = u(x, t; µ) fulfilling

∂tu+∇ · (v(u; µ)u)−∇ · (d(u; µ)∇u) = 0 in Ω × [0,Tmax] (1)
u(0; µ) = u0(µ) in Ω ×{0} (2)

plus Dirichlet boundary conditions u(µ) = udir(µ) on Γdir × [0,Tmax], Neumann
boundary conditions (v(u; µ)u−d(u; µ)∇u) · n = uneu(µ) on Γneu× [0,Tmax] with
suitable parametrized functions v(·; µ) ∈C(R,Rd) and d(·; µ) ∈C(R,R+).

For complex data functions, solutions of this problem can depend on the param-
eter in a highly nonlinear way, and the convection term can lead to a variety of so-
lution snapshots which is difficult to capture by a linear subspace Wred. This makes
the construction of the reduced basis space Wred difficult and therefore requires so-
phisticated construction algorithms for the reduced data. After elaborating on the
empirical operator interpolation and the reduced basis scheme for problem (1)-(2)
in Section 2, we provide an overview of such algorithms in Section 3 with a focus
on the time-adaptive construction of interpolation for the empirical interpolation. In
Section 4, we numerically discuss the effects and costs of the introduced algorithms
based on a finite volume discretization of a Buckley–Leverett type problem.

2 Reduced basis method

In this section, we present a reduced basis method for general operator based dis-
cretizations of equations (1), (2). We show that the reduced scheme depends both in
memory and computational complexity on the low dimensions of suitable reduced
spaces only and can therefore be efficiently evaluated. We first introduce the ba-



Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations 3

sic approach, and discuss the main ingredients to efficiently compute the reduced
solutions at the end of this section. For a more detailed presentation, we refer to [2].

As a starting point for the reduced basis scheme, we assume a high dimensional
discretization scheme producing for each parameter µ ∈P a sequence of solution
snapshots uk

h(µ) stemming from an H-dimensional discrete function space Wh. The
sequence indices k = 0, . . . ,K correspond to strictly increasing time steps tk := k∆ t
from the interval [0,Tmax], where ∆ t > 0 is a global time step size. For the high-
dimensional scheme, first, the initial data is projected on the discrete function space
yielding a discrete solution u0

h(µ) =Ph [u0(µ)], wherePh : L2(Ω)→Wh is a pro-
jection operator. Subsequently, equations of the form

(Id+∆ tLI (µ))
[
uk+1

h (µ)
]
− (Id+∆ tLE (µ))

[
uk

h (µ)
]
= 0 (3)

are solved with the Newton–Raphson method. The operatorsLI(µ),LE(µ) :Wh→
Wh describe the explicit and implicit discretization terms of a first order Runge–
Kutta scheme. For our numerical experiments presented in Section 4, the operators
implement finite volume fluxes for the diffusive respectively convective terms.

For the reduced basis scheme, we first assume a given reduced basis spaceWred⊂
Wh of dimension N� H. This space is spanned by selected solution snapshots and
its construction implies a computationally expensive preprocessing step. This allows
to solve for reduced solutions uk

red(µ) ∈Wred. These are computed by projection of
the initial data on the reduced basis space and with the same evolution scheme as in
(3), but with the operatorsLI(µ),LE(µ) substituted by reduced counterparts

L
k+1

red,I (µ) :=Pred ◦I k+1
Mk+1 ◦LI(µ) and L

k
red,E(µ) :=Pred ◦I k

Mk ◦LE(µ) (4)

at each time instance k = 0, . . . ,K−1. Here,Pred :Wh→Wred is a further projection
operator and the actual operator evaluations are substituted by approximations in a
further low dimensional function spaceWM ⊂Wh. This approximation, the so-called
empirical operator interpolation, is denoted by IM ◦L and shortly summarized in
the next subsection. Note that in this scheme the empirical operator interpolation
and therefore also the reduced function spaces can vary over time.

Empirical operator interpolation and offline/online splitting The idea of empir-
ical interpolation was first introduced in [1]. The empirical operator interpolation
presented here is extracted from [2].

The principal idea is to interpolate functions vh ∈ Wh in a collateral reduced
basis spaceWM spanned by basis functions qm,m = 1, . . . ,M with exact evaluations
at interpolation points xm ∈ TM , i.e.

IM [vh] (xm) =
M

∑
m=1

σmqm(xm) = vh(xm), (5)

where the coefficients can be determined easily because the construction process
for the basis functions ensures for each m = 0, . . . ,M that the condition qm(xm′) = 0
is fulfilled for all m′ < m. By optimizing the collateral reduced basis space such
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that it well approximates operator evaluations Lh(µ) [vh] ∈ Wh of a parameter-
ized discrete operatorLh(µ) on solution snapshots vh, we obtain an approximation
IM [Lh(µ) [vh]] ≈ Lh(µ) [vh] which can be computed by evaluating the operator
locally at M given interpolation points. If such an evaluation depends only on a few
degrees of freedom of the argument function (H independent Dof-dependence) and
M�H, the interpolation can be computed very efficiently. The interpolant is there-
fore suitable for the reduced basis method. Furthermore, it can be verified that the
same argumentation also applies to Fréchet derivatives of discrete operators fulfill-
ing the H independent Dof-dependence. This result is needed for the efficient im-
plementation of the Newton–Raphson method. In Section 3.2, we summarize how
the discrete function space WM can be constructed by a greedy search algorithms in
a finite set of operator evaluations.

In order to evaluate the reduced numerical scheme efficiently, the high dimen-
sional data needs to be precomputed in an expensive offline phase and to be reduced
to low-dimensional matrices and vectors. Afterwards, every Newton step of a re-
duced simulation can be computed with complexity O(NM2 +N3) including the
costs of the linear equation solver. In [2], the computations leading to these results
are presented in detail. The same article also introduces an efficiently computable a
posteriori error estimator η(µ) estimating the error

max
k=0,...,K

∥∥∥uk
h(µ)−uk

red(µ)
∥∥∥≤ η(µ) (6)

for a suitable problem-specific norm ‖·‖.

3 Adaptive basis generation strategies

In this section, we give an introduction on how reduced basis functions and empir-
ical interpolation data are constructed by algorithms that greedily search in a finite
subset of the parameter space for new basis functions. For complex parameter sets
or complex dependencies of the solution on the parameter, these algorithms, how-
ever, can result in very large reduced basis spaces and therefore make the speed
advantages of the reduced simulations obsolete. For this reason, we also discuss
variations of the algorithms adapting the parameter search set during the basis con-
struction which lead to smaller and better basis spaces.

3.1 POD-greedy algorithm

The “POD-greedy” algorithm introduced in [4] is used to generate the reduced basis
space Wred. Its purpose is to minimize the error ‖uh(µ)−ured(µ)‖ for all µ ∈P in
a suitable problem-specific norm. We assume the existence of an estimator η(µ)
as introduced in (6), a finite training set Mtrain ⊂P and an initial choice for the
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reduced basis ΦN0 := {ϕn}N0
n=1. For evolution problems, the span of this initial re-

duced basis usually comprises all initial data functions. Then, the reduced basis can
be iteratively extended by searching for the parameter µmax := argmaxµ∈Mtrain η(µ)
of the worst approximated trajectory, and adding the first and most significant mode
gained from a proper orthogonal decomposition of this trajectory’s projection er-
rors

{
uk

h(µmax)−Pred
[
uk

h(µmax)
]}K

k=0 as a new basis function. This algorithm is
repeated, until η(µmax) falls beneath a given tolerance.

Adaptation techniques: The basic algorithm described above depends on a fixed
initial choice for the training subset Mtrain. In case of complex dependencies of the
solution trajectories on the parameter, the reduced basis approximation can there-
fore turn out to be very bad for parameters not in the training set. In [6] this problem
is addressed by adaptively refining the parameter space if indicated by bad approxi-
mations from a further validation training set.

Other variations of the POD-Greedy algorithm adaptively partition the parameter
space and construct different reduced bases for each of these partitions [?, 5] leading
to faster reduced simulations at the cost of a more expensive offline phase.

3.2 Time-adaptive empirical operator interpolation

The construction of the collateral reduced basis space and corresponding interpola-
tion points follows a similar idea like the “POD-greedy” algorithms. For the empiri-
cal interpolation of an operatorIM ◦Lh, the interpolation error

∥∥∥vh−∑
M
j=1IM [vh]

∥∥∥
is minimized over all vh ∈ L :=

{
Lh(µ)

[
uk

h(µ)
]
|µ ∈P,k = 0, · · · ,K−1

}
. Anal-

ogously to the reduced basis generation, we define a finite subset Ltrain ⊂ L and
pick one of this set’s snapshots as an initial collateral reduced basis function. The
extension step for the empirical interpolation then looks as follows:

1. Find the approximation with the worst error vM← argsupvh∈Ltrain
‖uh−IM [vh]‖ .

2. Compute the residual between vM and its interpolant rM ← vM−IM [vh].
3. Find the interpolation point maximizing the residual xM ← argsupx∈Xh

|rM(x)|.
4. Normalize to construct new reduced basis space function qM ← rM

rM(xM) .

These steps are repeated until the maximum interpolation error falls beneath a given
tolerance. We call this algorithm EIDETAILED in the sequel.

Adaptation techniques: The adaptation techniques mentioned in Section 3.1 can
also be applied to the empirical interpolation algorithm EIDETAILED, but so far
no actual implementation for this is known to us. Supplementary to the adaptive
search in the parameter space, we propose to build different collateral reduced basis
spaces for different time instant sets K ⊂ {0, . . . ,K−1}. As this time-adaptation
strategy is the main focus of this article, we want to give a detailed description of
the algorithm:

procedure TIMESLICEDEI(Winit,K ,LKtrain)
WM ← EIDETAILED(Winit,LKtrain,Mmax,εtol)
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Fig. 1 Detailed simulation solution snapshots at time instants t = 0.0 (first column), t = 0.1 (sec-
ond column), t = 0.3 (third column) and for different parameters µ = (0,0.1,0.4) (first row) and
µ = (2,0.1,0.4) (second row). The last column shows the reduced solution on cross-sections at
y = 0.5 for the time instants t = 0 (solid line), t = 0.1 (dotted line), t = 0.3 (dashed line).

if εtol reached then
Mk←M and W k

Mk ←WM for all k ∈K .
else if card(K )≤ 2cmin then
W k

Mk ← EIDETAILED(WM ,LKtrain,∞,εtol) for all k ∈K .
else % maximum number of extensions Mmax reached
K1,K2←SPLITTIMEINTERVAL(K ,WM)
TIMESLICEDEI(W K1

M ,LK1
train)

TIMESLICEDEI(W K2
M ,LK2

train)
end if

end procedure
The training sets LKtrain are restrictions of the full training set Ltrain to operator

evaluations on solutions snapshots at time steps tk for k ∈K . Likewise W K
M is a

restriction of the discrete space WM build only out of solution snapshots with time
indices stemming fromK . This strategy reduces the computation time, as no com-
puted reduced basis function needs to be thrown away. The method SPLITTIMEIN-
TERVAL splits the intervalK such that afterwards the spacesW K1

M andW K2
M are of

equal dimension. The threshold cmin asserts a lower bound on the size of the time
intervals.

4 Example: Buckley–Leverett equation

We consider a Buckley–Leverett type problem in two space dimensions fulfilling
the equations (1)-(2) on a rectangular domain Ω := [0,1]2 with initial data function
u0(µ) = clow +(1− clow)χ[0.2,0.6]×[0.25,0.75], velocity vector v(u; µ) = (0,1)t f (u; µ)

and diffusion d(u; µ) = KD(s; µ). Here f (u; µ) = u3

µ1
·
(

u3

µ1
+ (1−u)3

µ2

)−1
denotes the

fractional flow rate, D(u; µ) = (1−u)3

µ2
f (u; µ)p′c(u; µ) the capillary diffusion for a

capillary pressure pc(u; µ) = u−λ . The variable parameters are chosen as µ :=
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.
adaptation no. of bases ø-dim(CRB) offline time[h] ø-runtime[s] max. error

no 1 350 1.47 6.79 5.88 ·10−4

yes, cmin = 5 11 223.09 2.08 4.06 5.80 ·10−4

yes, cmin = 1 26 198.42 8.40 3.38 5.75 ·10−4

Table 1 Comparison of the number of bases, the reduced basis sizes averaged over sub-intervals,
offline time, averaged online reduced simulation times and maximum errors for non-adaptive and
adaptive runs with threshold cmin = 5, and = 1. The average online run-times and maximum errors
are obtained from 20 simulations with randomly selected parameters µ .

(K,clow,λ ) and the parameter space is given by P := [1,2]× [0,0.1]× [0.1,0.4].
The scalar viscosities are fixed at µ1 = µ2 = 5. At the boundary of the domain a
Dirichlet condition applies with uNdir(µ) = clow.

Discretization The problem is discretized with a standard finite volume scheme
comprising an explicitly computed Engquist–Osher flux for the convective terms
and an implicit discretization of the diffusive terms. The underlying grid has a di-
mension of H = 25× 25 grid cells and the time interval [0,Tmax] is discretized by
60 uniformly distributed time steps. Fig. 1 illustrates solution snapshots for two
different parameters with different diffusion levels K = 0 respectively K = 2. The
cross-section plots in the last column show the expected behaviour of combinations
of rarefaction waves and smoothed shocks.

Offline phase In order to assess the effects of the adaptation algorithms, the re-
duced basis algorithms are run three times, once without the time adaptive empirical
operator interpolation and two times with adaptation, but different thresholds cmin
to bound the time interval size from below. The results concerning reduced basis
sizes, offline and reduced simulation time, are summarized in Table 1.

In order to assure that the generated reduced basis leads to equally small reduc-
tion errors for all parameters of the parameter space, the parameter training set for
the “POD-greedy” algorithm has been adapted with a validation set of randomly
chosen parameters µ in both runs. In the test runs, after three refinement steps the
training parameter set comprises 255 elements, and the chosen validation ratio of 1.4
is assured after the maximum error for the training parameters has fallen beneath the
targeted level of 5 ·10−4. The target interpolation error for the empirical interpola-
tion was set to 10−6 in all runs. This error is reached with an average number of
198 respectively 223 basis functions in the adaptive cases, and 350 basis functions
without adaptation. In the adaptive runs, the time interval has been decomposed
into 11 respectively 26 sub-intervals (cf. Fig 2(a)&(b)). Fig. 2(c) illustrates the er-
ror decrease during the generation of the reduced spaces for selected time intervals
(dashed lines) for the run with cmin = 1. It can be observed that the slopes for the
error graphs are much steeper than in the non-adaptive case illustrated with a dashed
line. Because of the larger variation of the solutions for larger time steps, however,
the basis on the last interval [0.29,0.30] still shows the slowest error decrease. Fig.
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Fig. 2 Illustration of basis
sizes on time intervals after
adaptation with (a) cmin = 1
and (b) cmin = 5. Plot (c)
illustrates the error decrease
during generation of bases on
three intervals marked with
the same color in plot (a). The
dashed line graph shows the
slower decrease for a single
basis without adaptation.
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2(a+b) show that for both adaptive runs the bases dimensions for all intervals stay
significantly below the non-adaptive basis size of 350.

Conclusion We observed that the adaptive search in the time domain can lead to
faster reduced simulations. However, the costs of 26 generated basis spaces for an
average dimension reduction by a factor of approximately 0.56 turned out to be very
expensive. We therefore advice to combine the time domain search with a parameter
domain search to obtain a further improvement of the method.
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